
J Glob Optim (2009) 44:313–337
DOI 10.1007/s10898-008-9325-7

DC programming techniques for solving a class
of nonlinear bilevel programs

Le Thi Hoai An · Pham Dinh Tao · Nam Nguyen Canh ·
Nguyen Van Thoai

Received: 14 May 2006 / Accepted: 11 June 2008 / Published online: 9 July 2008
© Springer Science+Business Media, LLC. 2008

Abstract We propose a method for finding a global solution of a class of nonlinear bilevel
programs, in which the objective function in the first level is a DC function, and the second
level consists of finding a Karush-Kuhn-Tucker point of a quadratic programming problem.
This method is a combination of the local algorithm DCA in DC programming with a branch
and bound scheme well known in discrete and global optimization. Computational results on
a class of quadratic bilevel programs are reported.

Keywords Bilevel programming · Nonconvex programming · DC programming · DCA ·
Global optimization · Branch and bound techniques

1 Introduction

A real function defined on a convex set is called DC if it can be represented as the difference
of two convex functions. The subject of the present article is a class of nonlinear bilevel

L. T. Hoai An
Laboratory of Theoretical and Applied Computer Science, UFR MIM, Metz University,
Ile du Saulcy, 57045 Metz, France
e-mail: lethi@sciences.univ-metz.fr

P. D. Tao (B) · N. Nguyen Canh
Laboratory of Modelling, Optimization and Operations Research, LMI, National Institute for Applied
Sciences - Rouen, BP 08, Place Emile Blondel F, 76131 Mont Saint Aignan Cedex, France
e-mail: pham@insa-rouen.fr

N. Nguyen Canh
e-mail: nguyencn@insa-rouen.fr

N. Van Thoai
Department of Mathematics, University of Trier, 54286 Trier, Germany
e-mail: thoai@uni-trier.de

123

314 J Glob Optim (2009) 44:313–337

programs dealing with DC functions, which is described in the form

α := min f (x, y)

s.t. (x, y) ∈ Z
y ∈ K (x),

(1)

where f : IRn1× IRn2 → IR is a DC function, Z is a polyhedral convex subset of IRn1× IRn2 ,
and for each given x ∈ IRn1 , K (x) is the set of all Karush-Kuhn-Tucker points of the following
quadratic programming problem:

min yT Px + 1
2 yT Qy + qT y

s.t. Dx + Ey + b ≤ 0
(2)

with P, Q, D and E being matrices of dimensions (n2×n1), (n2×n2), (p×n1) and (p×n2),
respectively, and q ∈ IRn2 , b ∈ IR p . By replacing Q with 1

2 (Q+QT), we can assume, without
loss of generality, that Q is symmetric.

For the establishment of solution methods for the above nonlinear bilevel programming
problem, we assume that the set

{(x, y) ∈ IRn1 × IRn2 : (x, y) ∈ Z , Dx + Ey + b ≤ 0}
is nonempty and bounded.

As well known, for each given x, K (x) is the set of all solutions (y, λ) ∈ IRn2 × IRp of
the system

Px + Qy + q + ET λ = 0
Dx + Ey + b ≤ 0
λT (Dx + Ey + b) = 0
λ ≥ 0.

(3)

Using (3) we can rewrite Problem (1) in the form

α := min f (x, y)

s.t. (x, y) ∈ Z
Px + Qy + ET λ+ q = 0
Dx + Ey + b ≤ 0
λT (Dx + Ey + b) = 0
λ ≥ 0.

(4)

Clearly, Problems (1) and (4) are equivalent in the following sense:

(i) If (x∗, y∗) is an optimal solution of (1), then there exists λ∗ such that (x∗, y∗, λ∗) is an
optimal solution of (4), and

(ii) If (x∗, y∗, λ∗) is an optimal solution of (4), then (x∗, y∗) is an optimal solution of (1).

The nonconvex program (1) is NP-hard, even in case f (x, y) is quadratic. Obviously, the
complete nonlinear bilevel program, obtained from (1) in replacing K (x) by the solution set
of (2), is even more difficult, because the latter one is itself NP-hard.

Bilevel programming problems play a prominent role in the field of nonconvex global
optimization because of its theoretical aspects as well as its wide range of applications. In
[23] and [28], bibliographies of almost all references on this topic up to 1997 can be found.
The most efficient methods are established for solving the linear bilevel programming prob-
lem in which the function f is linear, Z is a polyhedral convex set, and P and Q are null
matrices. For some classes of nonlinear problems, solution methods can be found e.g. in
[1–6,19,24,27].

123

J Glob Optim (2009) 44:313–337 315

In this article, we present a method for solving the nonlinear bilevel programming problem
of the form (1), which is a combination of a local approach in DC programming and the well
known branch and bound scheme successfully used in global optimization. To this purpose,
we first apply the theory of exact penalization of mathematical programs with equilibrium
constraints developed by Luo et al. [17] and the exact penalty techniques in DC programming
due to Le Thi Hoai An et al. [13,14] to reformulate Problem (4) as the problem of minimizing
a DC function over a polyhedral convex set. The resulting problem is then handled by a local
approach in DC programming developed by Pham Dinh Tao and Le Thi Hoai An in their
early works (see, [8,9,13,10–12,14,26,25]). A branch and bound scheme in combination
with this local approach yields an algorithm for finding a global optimal solution of the
nonlinear bilevel program under consideration.

Both DCA and branch and bound algorithms are finite in case the objective function
f (x, y) is convex.

The article is organized as follows. After the introduction, the mentioned DC program-
ming and DCA (DC Algorithms) are briefly presented in Sect. 2. Section 3 deals with a special
realization of DCA to the underlying nonlinear bilevel program. A combination of DCA with
a branch and bound algorithm is discussed in Sect. 4. Numerical examples and computational
results on some classes of nonconvex quadratic bilevel programs are reported in Sect. 5, while
some conclusion is presented in the last section.

2 DC programming and DCA

First of all, to make the paper self-contained and so more comprehensive for the reader not
familiar with DC programming and DCA, we will outline main theoretical and algorithmic
results on the topic. It is then more natural and elegant to enhance the general results for the
nonlinear bilevel program.

2.1 DC programming

Let �0(IRn) denote the convex cone of all lower semicontinuous proper convex functions
on IRn . The vector space of DC functions, DC(IRn) = �0(IRn) − �0(IRn), is quite large
to contain almost real life objective functions and is closed under all the operations usually
considered in Optimization.

Consider the standard DC program

α = inf{ f (x) := g(x)− h(x) : x ∈ IRn} (Pdc)

with g, h ∈ �0(IRn). Remark that the closed convex constraint set C is incorporated in the
first convex DC component g with the help of its indicator function χC (χC (x) := 0 if
x ∈ C,+∞ otherwise). Let

g∗(y) := sup{〈x, y〉 − g(x) : x ∈ IRn}
be the conjugate function of g. The dual problem of (Pdc) is defined by

α = inf{h∗(y)− g∗(y) : y ∈ IRn} (Ddc)

by using the fact that every function θ ∈ �0(IRn) is characterized as a pointwise supremum
of affine functions. More precisely

θ(x) := sup{〈x, y〉 − θ∗(y) : y ∈ IRn}.

123

316 J Glob Optim (2009) 44:313–337

DC programming investigates the structure of the vector space DC(IRn), DC duality,
optimality conditions for DC programs and relations between primal and dual DC programs.
They constitute the basic tools for the construction of DCA. The complexity of DC programs
resides, of course, in the lack of practical optimal globality conditions. It is worth noting that
our works involve the convex DC components g and h but not the DC function f itself.

A DC program (Pdc) is called polyhedral if either g or h is a polyhedral convex func-
tion. This class of DC programs, which is frequently encountered in practice and has been
extensively developed in our previous works (see e.g. [9] and references therein), enjoys
interesting properties (from both theoretical and practical viewpoints) concerning the local
optimality and the convergence of the DCA.

Instead of impractical global optimality conditions, we developed the following necessary
local optimality conditions for DC programs in their primal part (by symmetry their dual part
is trivial (see [8–10,12,13,25,26] and references therein):

(i) ∂h(x∗) ∩ ∂g(x∗)
= ∅
Such a point x∗ is called critical point of g − h.

(ii) ∅
= ∂h(x∗) ⊂ ∂g(x∗).

The condition (ii) is also sufficient for many classes of DC programs. In particular its suffi-
ciency holds for the next cases quite often encountered in practice:
+ In polyhedral DC programs with h being a polyhedral convex function. Hence in this

case, a critical point is almost always a local minimizer for (Pdc) because a polyhedral convex
function is differentiable everywhere except on a set of measure zero. More precisely if

h(x) := max{aT
i x − γi : i = 1, . . . , m}

then ∂h(x) = co{ai : i ∈ M(x)} where M(x) := {i ∈ M : h(x) = aT
i x − γi } where

M := {1, ..., m] and co denotes the convex hull. Hence h is nondifferentiale only on a union
of a finite collection of affine sets of dimensions smaller than that of the whole space.Hence
in this case, a critical point is almost always a local minimizer for (Pdc).

+ In case the function f is locally convex at x∗.
Note that a polyhedral DC function f = g− h with h being polyhedral convex is locally

convex wherever h is differentiable.

(iii) The transportation of local and global solutions between (Pdc) and (Ddc) is ex-
pressed by:

[∪y∗∈D∂g∗(y∗)] ⊂ P, [∪x∗∈P∂h(x∗)] ⊂ D
where P and D denote the solution sets of (Pdc) and (Ddc) respectively.

Under technical conditions, this transportaion holds also for local solutions of (Pdc) and
(Ddc).

The transportation property has led to the following design of DCA.

2.2 DCA

Based on local optimality conditions and duality in DC programming, the DCA consists in
the construction of two sequences {xk} and {yk} (candidates to be solutions of (Pdc) and
(Ddc) resp.) such that xk+1 (resp. yk) is a solution to the convex program (Pk)(resp. (Dk))

defined by

inf{g(x)− hk(x) : x ∈ IRn} (Pk)

123

J Glob Optim (2009) 44:313–337 317

where

hk(x) := h(xk)+ 〈x − xk, yk〉, (5)

inf{h∗(y)− (g∗)k(y) : y ∈ IRn} (Dk)

where

(g∗)k(y) := g∗(yk−1)+ 〈y − yk−1, xk〉. (6)

It is clear that (Pk)(resp.(Dk)) is obtained from (Pdc)(resp.(Ddc)) by replacing h (resp.

g∗) with its affine minorization hk (resp. (g∗)k) defined by yk ∈ ∂h(xk) (resp.xk ∈
∂g∗(yk−1)) and the DCA then yields the next scheme:

yk ∈ ∂h(xk); xk+1 ∈ ∂g∗(yk).

We will end this subsection by summarizing the main properties of DCA [8–10,12,13,25,26],
and references therein.

DCA’s convergence theorem: DCA is a descent method without linesearch which enjoys
the following primal properties (the dual ones can be formulated in a similar way):

(1) The sequences {g(xk)− h(xk)} and {h∗(yk)− g∗(yk)} are decreasing and

• g(xk+1)− h(xk+1) = g(xk)− h(xk) iff
yk ∈ ∂g(xk) ∩ ∂h(xk), yk ∈ ∂g(xk+1) ∩ ∂h(xk+1) and [ρ(g, C)+ ρ(h, C)]‖xk+1 −
xk‖ = 0. Moreover if g or h are strictly convex on C then xk = xk+1.

In such a case DCA terminates at the kth iteration (finite convergence of DCA).
Here C (resp. D) is a convex set containing the sequence {xk} (resp. {yk}) and the
modulus of strong convexity of g on C , denoted by ρ(g, C) or ρ(g) if C = IRn , is
given by:

ρ(g, C) = sup{ρ ≥ 0 : g − (ρ/2)‖ · ‖2 be convex on C}.
• h∗(yk+1) − g∗(yk+1) = h∗(yk) − g∗(yk) iff xk+1 ∈ ∂g∗(yk) ∩ ∂h∗(yk), xk+1 ∈

∂g∗(yk+1)∩ ∂h∗(yk+1) and [ρ(g∗, D)+ρ(h∗, D)]‖yk+1− yk‖ = 0. Moreover if g∗
or h∗ are strictly convex on D, then yk+1 = yk .
In such a case DCA terminates at the kth iteration (finite convergence of DCA).

(2) If ρ(g, C)+ρ(h, C) > 0 (resp. ρ(g∗, D)+ρ(h∗, D) > 0) then the series {‖xk+1−xk‖2
(resp. {‖yk+1 − yk‖2} converges.

(3) If the optimal value α of problem (Pdc) is finite and the infinite sequences {xk} and {yk}
are bounded then every limit point x∞ (resp. y∞) of the sequence {xk} (resp. {yk}) is a
critical point of g − h (resp. h∗ − g∗).

(4) DCA has a linear convergence for general DC programs.
(5) Within the natural choice of xk+1 and yk by

xk+1 ∈ arg min{g(x)− h(x) : x ∈ ∂g∗(yk)}
= arg min{〈x, yk〉 − h(x) : x ∈ ∂g∗(yk)}

and

yk ∈ arg min{h∗(y)− g∗(y) : y ∈ ∂h(xk)}
= arg min{〈xk, y〉 − g∗(y) : y ∈ ∂h(xk)}

123

318 J Glob Optim (2009) 44:313–337

the previous results are improved: nonemptiness of intersection of subdifferentials will
be replaced by inclusion of subdiffrentials:

∂h(x∞) ⊂ ∂g(x∞) and ∂g∗(y∞) ⊂ ∂h∗(y∞).

(6) For polyhedral DC programs, DCA has a finite convergence.
(7) An in-depth analysis of DCA:

Let h	 and (g∗)	 be the polyhedral convex functions (which underestimate the convex
functions h and g∗ respectively) defined by

h	(x) : = sup{hi (x) : i = 0, ..., 	}, ∀x ∈ IRn (7)

(g∗)	(y) = sup{(g∗)i (y) : i = 1, ..., 	},∀y ∈ IRn . (8)

Let k := inf{	 : g(x)− h(x) = g(x	+1)− h(x	+1)}. Then there hold:

(i) If k is finite then the solution computed by DCA, xk+1 and yk , are global minimizers
for the polyhedral DC programs

βk = inf{g(x)− hk(x) : x ∈ IRn} (Pk)

and

βk = inf{h∗(y)− (g∗)k(y) : x ∈ IRn} (Dk)

respectively.
(ii) If k = +∞ (i.e., g(x) − h(x) > g(x	+1) − h(x	+1) for every) then x∞ and

y∞ are global minimizers for the polyhedral DC programs

β∞ = inf{g(x)− h∞(x) : x ∈ IRn} (P∞)

and

β∞ = inf{h∗(y)− (g∗)∞(y) : x ∈ IRn} (D∞)

respectively, where the convex functions h∞, h∞, (g∗)∞ and (g∗)∞ are given by

h∞(x) : = h(x∞)+ 〈x − x∞, y∞〉 = 〈x, y∞〉 − h∗(y∞), ∀x ∈ IRn

(g∗)∞(y) : = g∗(y∞)+ 〈y − y∞, x∞〉 = 〈y, x∞〉 − g(x∞), ∀y ∈ IRn

h∞(x) : = sup{hi (x) : i = 0, ...,+∞}, ∀x ∈ IRn

(g∗)∞(y) = sup{(g∗)i (y) : i = 1, ...,+∞}, ∀y ∈ IRn .

(iii) If either of the following conditions hold (k is finite or equal to +∞)

+ the functions hk and h coincide at some optimal solution to (Pdc)

+ the functions (g∗)k and g∗ coincide at some optimal solution to (Ddc) then
xk (resp. yk) is also an optimal solution to (Pdc) (resp. (Ddc))

Remark 1 (i) A DC function f has infinitely many DC decompositions which have crucial
impacts on the qualities (speed of convergence, robustness, efficiency, globality of computed
solutions,...) of DCA.
(ii) In practice, DCA, once well suited to treated DC programs, handles the large-scale setting
and converges quite often to global solutions.
(iii) Property 7 (i) holds especially in polyhedral DC programs where DCA has a finite con-
vergence while 7 (ii) involves infinite convergence. The hidden features reside in 7): (k is
finite or equal to +∞).

123

J Glob Optim (2009) 44:313–337 319

+ xk+1 (resp. yk) is not only the solution of (Pk) (resp. (Dk) but also the solution to the
more tightly approximate problem (Pk) (resp. (Dk)).
+ βk + εk ≤ α ≤ βk where εk := inf{hk(x)− h(x) : x ∈ P} ≤ 0 and the more εk is near

zero (i.e., the more the polyhedral convex minorization hk is close to h over P), the more
xk+1 is near P .

We shall apply all these DC enhancement features to solve Problem (4).

3 DCA for solving the DC program (10)

In this section we will reformulate Problem (4) as an equivalent DC program and then apply
DCA for its solution. We emphasize the finite convergence of DCA and its feasibility in
related polyhedral DC programs.

3.1 Reformulation of the penalty equivalent as a DC program

Let θ : IRn1 × IRn2 × IRp → IR be the function defined by

θ(x, y, λ) :=
p∑

i=1

min{λi ,−(Dx + Ey + b)i }. (9)

It is clear that the negation of θ is finite polyhedral convex (and so nonsmooth) function
on IRn1 × IRn2 × IRp , and θ is nonnegative on the feasible set of Problem (4). Since DC
functions are Lipschitz on bounded sets of their domains, it follows, from Z.Luo et al. [17]
and Le Thi et al. [13,14], that if Problem (4) is feasible and the polyhedral convex set
{(x, y) ∈ Z : Dx + Ey + b ≤ 0} is bounded, then there exist positive scalars τ1 and c such
that for all scalars τ > τ1, Problem (4) is equivalent to the following penalized program

α(τ) := min Fτ (x, y, λ) := f (x, y)+ τθ(x, y, λ)

s.t. (x, y) ∈ Z
Px + Qy + q + ET λ = 0
Dx + Ey + b ≤ 0
λ ≥ 0
‖λ‖∞ ≤ c,

(10)

where ‖·‖∞ stands for the infinity norm ‖·‖∞ := max{|λi | : i = 1, . . . , p}.
The objective function of Problem (10) is nondifferentiable and nonconvex. It is actually

a DC function and Problem (10) is a DC program. Note that if the objective function f of
Problem (1) is convex or a DC function whose first DC component is polyhedral convex,
then (10) is a polyhedral DC program for which DCA has a finite convergence.

First we have to present Problem (10) in the standard form of a DC program. Since the
function f is DC (in the pair of variables (x, y)) on Z

f (x, y) = f1(x, y)− f2(x, y), (11)

with f1, f2 being convex functions (in (x, y)) on Z .

The function F defined by

F(x, y, λ) := f (x, y)

123

320 J Glob Optim (2009) 44:313–337

is DC (in the triple variables X = (x, y, λ)) on Z× IR p with the following DC decomposition

F(X) = F(x, y, λ) = F1(x, y, λ)− F2(x, y, λ),

where F1, F2 are the following convex functions (in (x, y, λ)) on Z× IR p

F1(x, y, λ) := f1(x, y), F2(x, y, λ) := f2(x, y).

By assumption, the feasible set C of (10) is a bounded polyhedral convex set of IRn1 ×
IRn2 × IRp. Its indicator function χC is defined by

χC (x, y, λ) := 0 if (x, y, λ) ∈ C,+∞ otherwise.

With the concavity of the function θ , Problem (10) can be rewritten as the following DC
program

min{G(x, y, λ)− H(x, y, λ) : (x, y, λ) ∈ IRn1 × IRn2 × IRp}, (12)

with G, H being convex functions on Z× IR p defined by (τ ≥ τ ∗)

G := F1 + χC , H := F2 − τθ.

Recall that if the function f is convex, then f2 = 0. In this case, H is a polyhedral convex
function and Problem (12) is a polyhedral DC program.

According to Sect. 3.1, performing DCA for Problem (12) amounts to computing the two
sequences {(xk, yk, λk)} and {(uk, vk, wk)} defined by

(uk, vk, wk) ∈ ∂ H(xk, yk, λk), (xk+1, yk+1, λk+1) ∈ ∂G∗ (uk, vk, wk).

In other words we have to compute the subdifferentials ∂ H and ∂G∗.
As usually, ∂ H is often explicitly computed with the help of known rules in convex

analysis. Here we have

∂ H(x, y, λ) = ∂ F2(x, y, λ)+ τ∂(−θ)(x, y, λ), (13)

with the explicit computation of ∂(−θ). Indeed, since

−θ(x, y, λ) =
p∑

i=1

max{−λi , (Dx + Ey + b)i }

=
p∑

i=1

max{(−ei)T λ, (ei)T (Dx + Ey + b)}

=
p∑

i=1

max{(−ei)T λ, (DT ei)T x + (ET ei)T y + (ei)T b},

where e1, . . . , ep are the unit vectors of IRp , it follows that

∂(−θ)(x, y, λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(0, 0,−ei)} if λi < −(Dx + Ey + b)i ,

{(DT ei , ET ei , 0)} if λi > −(Dx + Ey + b)i ,

[(0, 0,−ei), (DT ei , ET ei , 0)] if λi = −(Dx + Ey + b)i .

(14)

So if the computation of ∂ F2 is explicit then that of ∂ H is explicit too.

123

J Glob Optim (2009) 44:313–337 321

As for computing ∂G∗(u, v, t), we have in general to solve the following related convex
program:

min{F1(x, y, λ)− 〈(x, y, λ), (u, v, t)〉 : (x, y, λ) ∈ C}. (15)

We are now in a position to give the DCA scheme to solving Problem (10). It suffices to
particularize the calculation of ∂h and ∂g∗ in the general scheme.

3.1.1 DCA for solving Problem (10)

It consists of the construction of two sequences {Xk = (xk, yk, λk)} and {Y k = (uk, vk, tk)}
as follows:

1. Choose an initial point X1 = (xk, yk, λk) not necessarily in C. Set k = 1 and let ε1 and
ε2 be sufficiently small positive numbers.

2. Computer Y k = (uk, vk, tk) ∈ ∂ H(Xk) by using (13) and (14).
3. Compute Xk+1 ∈ ∂g∗(Gk), by solving the convex program (15) with (u, v, t) = (uk,

vk, tk).
4. If either

∥∥∥Xk+1 − Xk
∥∥∥ ≤ ε1(1+

∥∥∥Xk
∥∥∥)

or
∣∣∣(F + τθ)(Xk)− (F + τθ)(Xk+1)

∣∣∣ ≤ ε2(

∣∣∣(F + τθ)(Xk)

∣∣∣+ 1)

then stop and Xk+1is the computed solution. Otherwise, set k = k + 1 and go to Step 2.

3.1.2 Special feature of DCA for Problem (10) in case f is a polyhedral DC function

It is crucial for local algorithms applied to the penalty equivalent (10) to provide feasible
solutions X∗ = (x∗, y∗, λ∗) of the original nonlinear bilevel problem (4), i.e., θ(X∗) = 0.

We shall prove that DCA bears this feature in case the objective function f = g − h of (4)
is a polyhedral DC function with g being polyhedral convex. Consider first the case g = 0,

i.e., f = −h.

Proposition 2 If the objective function f of the nonlinear bilevel program (4) is a concave
function, then there is a positive constant τ2 such that the following holds:

For τ > max(τ1,τ2) let {X j = (x j , yi , λ j)} generated by DCA applied to the penalty
equivalent (10) with penalty parameter τ1. Then there hold

(i) the sequence {Xi = (xi , yi , λi)} is finite and contained in the vertex set V (C) of the
feasible set of (4).

(ii) both sequences { f (xi , yi)+ τθ(Xi)} and {θ(Xi)} are decreasing

Proof (i) The objective function of (10) then is concave function and (10) is a polyhedral
DC program. It follows that the sequence {Xi = (xi , yi , λi)} generated by DCA can
be taken in V (C).

(ii) If V (C) is contained in the feasible solution set of (10) then the assertion is trivial with
τ2 = 0. Otherwise let

ξ : = min
{
θ(X ′)− θ(X) : (X, X ′) ∈ V (C)× V (C), θ(X ′) > θ(X)

}
,

η : = max{F(X ′)− F(X) : (X ′, X) ∈ V (C)× V (C)};

123

322 J Glob Optim (2009) 44:313–337

then 0 < ξ < +∞ and 0 ≤ η < +∞ since V (K) is a finite. Consider now the
nonnegative number τ2 defined by

τ2 := ξ

η
,

and τ > τ2. Let {Xk} be the sequence generated by DCA applied to (10) with this value
τ. Assume for contradiction that there is r ≥ 1 such that θ(Xr+1) > θ(Xr). Then

τ [θ(Xr+1)− θ(Xr)] > τ2[θ(Xr+1)− θ(Xr)] = ξ

η
[θ(Xr+1)− θ(Xr)] ≥ ξ.

Hence

τ [θ(Xr+1)− θ(Xr)] ≥ F(Xr)− F(Xr+1),

i.e.,

F(Xr+1)+ tθ(Xr+1) > F(Xr)+ τθ(Xr),

that contradicts the decrease of the sequence {F(Xk)+ τθ(Xk)}.
��

Remark 3 The proof of Proposition 2 is based on the finiteness of V (C) that contains the
sequences {X j = (x j , yi , λ j)} generated by DCA applied to (10) with every τ ≥ 0. Hence
it remains valid in the case f = f1− f2 (11) with f1 being a polyhedral convex function on
Z .

Extension of this proposition to general DC functions f is still an open problem. In the
case the function f is convex, the sequence {X j = (x j , yi , λ j)} generated by DCA applied
to (10) with every τ ≥ 0, is still finite but all these sequences depending on τ are no more
contained in a finite subset of C independent of τ. One has in such a case the following
weaker result: For τ ≥ 0, let

k : = arg min{ j ≥ 1 : F(X j+1)+ τθ(X j+1) = F(X j)+ τθ(X j)}, (16)

τ2 : = max

{
f (x j , y j)− f (x j+1, y j+1)

θ(X j+1)− θ(X j)
: j = 1, . . . , k and θ(X j+1) > θ(X j)

}
.

If τ > τ2, then both sequences { f (xi , yi)+ τθ(Xi)} and {θ(Xi)} are decreasing.

As a result of Remark 3 and local optimality conditions in polyhedral DC programming,
we get

Corollary 4 Under the assumptions of Proposition 2 and (16), if f is convex then the
sequence {Xi = (xi , yi , λi)} generated by DCA applied to the penalty equivalent (10)
satisfies the following properties:

(i) If X	 = (x	, y	, λ), for some 	 ≥ 1, is feasible for (4), then Xi = (xi , yi , λi) , for
every i ≥ 	, is feasible too and in this case the solution X∗ = (x∗, y∗, λ∗) = Xk, com-
puted by DCA, is a feasible solution of (4). Moreover the finite sequence of objective
values { f (xi , yi) : i = 	, . . . , k} for (4) is strictly decreasing and f (xk+1, yk+1) =
f (xk, yk).

(ii) If the solution X∗ = (x∗, y∗, λ∗) computed by DCA is feasible for (4) and verifies the
strict complementarity condition then it is a local minimizer for (10).

123

J Glob Optim (2009) 44:313–337 323

Proof We have only to prove (ii). According to (13) and (14) the function H = τ(−θ) is dif-
ferentiable at X∗ = (x∗, y∗, λ∗) if and only if λi > −(Dx + Ey+ b)i for i = 1, . . . , p, i.e.,
the feasible solution X∗ = (x∗, y∗, λ∗) of (4) verifies the strict complementarity conditions.
Since (10) is a polyhedral DC program, such an X∗ = (x∗, y∗, λ∗) is a local minimizer for
(10) (See Sect. 2). ��

Roughly speaking, the resulting DCA applied to (10) works in fact with the original prob-
lem (4) from the 	th iteration if X	 = (x	, y	, λ) is feasible to the latter one and it decreases
the objective values of (4). This property is worthy to note.

3.2 Initial point and strategies of launching DCA

From the above results, it is important to find a good initial points for DCA (not only in
the case DC polyhedral) applied to (10). For this, we use again DCA applied to the concave
minimization problem

0 = min θ(x, y, λ) (17)

subject to (x, y) ∈ Z

Px + Qy + q + ET y = 0

Dx + Ey + b ≤ 0

λ ≥ 0, ‖λ‖∞ ≤ c

Problem (17) is a polyhedral DC program with known optimal value and whose solution
set is exactly the feasible set (4). Fortunately, as for linear complementarity problems [11],
DCA, with starting point X = (x, y, λ) not necessarily feasible but such that θ(x, y, λ) = 0,

converges, almost always in practice, to a global solution of (17).
When is DCA restarted? During the algorithm, we can restart DCA to improve the cur-

rent best upper bounds. As usual, an upper bound obtained when a feasible solution of the
Problem (4) found, we call this upper bound as Score. During the algorithm, to improve the
Score, we will restart DCA when

Fτ (X̃) ≤ Score(1+ 1.e − 2) (18)

where X̃ = (x̃, ỹ, λ̃) is an optimal solution of the current problem estimating lower bound.
However, by using the exact penalty technique, we have another upper bound. From the

equivalence of two problems (4) and (10) we can take Fτ (x, y, λ) as an upper bound if
(x, y, λ) is a feasible point of (10) (not necessarily feasible point of (4)), we call this upper
bound as U B f (in the case (x, y, λ) is not feasible to (4)). So in our algorithm, in order to
reduce the number of restart DCA, we can restart when the following condition is satisfied

Fτ (X̃) ≤ min{Score, U B f }(1+ 1 · e − 2) (19)

Remark 5 Since the value of τ is large, so Score is often smaller than U B f .

To check globality of solutions computed by DCA or to find better solutions for restarting
the algorithm, we have recourse to global optimization techniques that we will present below.

123

324 J Glob Optim (2009) 44:313–337

4 Global optimization algorithm

4.1 Reformulation of Problems (4) and (10)

To establish a global algorithm for solving Problem (4), we define a new vector of variables
w ∈ IR p by

w = −Dx − Ey − b,

and formulate Problems (4) equivalently as

α := min f (x, y)

s.t. (x, y) ∈ Z
Px + Qy + ET λ+ q = 0
Dx + Ey + w + b = 0
λT w = 0
λ ≥ 0
w ≥ 0.

(20)

Using the number c in Problem (10) and the assumption that the set

{(x, y) ∈ IRn1 × IRn2 : (x, y) ∈ Z , Dx + Ey + b ≤ 0}
is nonempty and bounded, we can construct two rectangles

R = {λ ∈ IRp : 0 ≤ ζ ≤ λ ≤ ξ < +∞}, and
S = {w ∈ IR p : 0 ≤ 	 ≤ w ≤ u < +∞}, (21)

such that Problem (20) can be rewritten as

α := min f (x, y)

s.t. (x, y) ∈ Z
Px + Qy + ET λ+ q = 0
Dx + Ey + w + b = 0
λ jw j = 0, j = 1, . . . , p
λ ∈ R
w ∈ S.

(22)

Accordingly, Problem (10) can be reformulated as

α(τ) := min f (x, y)+ τ

p∑

j=1

min{λ j , w j }

s.t. (x, y) ∈ Z
Px + Qy + ET λ+ q = 0
Dx + Ey + w + b = 0
λ ∈ R
w ∈ S.

(23)

Obviously, Problems (4) and (22) are equivalent in the following sense:

(i) If (x∗, y∗) is an optimal solution of (4), then there exist λ∗ and w∗ such that (x∗, y∗, λ∗,
w∗) is an optimal solution of (22), and

(ii) If (x∗, y∗, λ∗, w∗) is an optimal solution of (22), then (x∗, y∗) is an optimal solution of
(4).

123

J Glob Optim (2009) 44:313–337 325

The rectangles R and S can be constructed by computing the vectors ζ, ξ and 	, u, respec-
tively, as follows.

ζ j = max{0, min{λ j : (x, y) ∈ Z , Dx + Ey + b ≤ 0, Px + Qy + ET λ+ q = 0,

c ≥ λi ≥ 0 for i
= j}},
ξ j = max{λ j : (x, y) ∈ Z , Dx + Ey + b ≤ 0, Px + Qy + ET λ+ q = 0,

c ≥ λi ≥ ζi for i = 1, 2, . . . , p},

	 j = max{0, min{(−Dx − Ey − b)i : (x, y) ∈ Z , Dx + Ey + b ≤ 0,

Px + Qy + ET λ+ q = 0, ξ ≥ λ ≥ ζ }},
u j = max{(−Dx − Ey − b)i : (x, y) ∈ Z , Dx + Ey + b ≤ 0,

Px + Qy + ET λ+ q = 0,

ξ ≥ λ ≥ ζ }.

Remark 6 In principle, c should be approximated by a large number. In some special cases,
if the set

� = {(x, y, λ) ∈ IRn1+n2+p :
(x, y) ∈ Z , Dx + Ey + b ≤ 0, Px + Qy + ET λ+ q = 0, λ́ ≥ 0}

is compact, then the rectangles R and S can be simply computed without using the number
c.

As mentioned in the introduction, we assume in the paper that the polyhedral convex set

Z ′ := {(x, y) ∈ Z : Dx + Ey + b ≤ 0}
is nonempty and bounded. It is clear that the boundedness of Z ′ holds if either Z is bounded
or the objective function f is coercive, i.e.

lim‖(x,y)‖→+∞ f (x, y) = +∞.

On the other hand, if Z ′ is bounded, then the polyhedral convex set � is bounded if and only
if its recession cone 0+� given by [22,7]:

0+� = {(0, 0, ν) : ET ν = 0, ν ≥ 0}
is reduced to {0, 0, 0}.

In what follows we establish an algorithm for Problem (22) in the sense of global optimiza-
tion. This is a combination of the DCA presented in the previous section and the well known
branch and bound scheme. Each branch and bound algorithm consists mainly of two basic
operations: bound estimation and branching procedure. We discuss these basic operations
before presenting the algorithm in detail.

4.2 Lower bound estimation

Our method for estimating lower bounds is based on the following problem. Let I and J be
two subsets of the index set {1, . . . , p}. Compute a lower bound for the optimal value of the
following optimization problem, denoted by P(IJ):

123

326 J Glob Optim (2009) 44:313–337

min f (x, y)

s.t. (x, y) ∈ Z
Px + Qy + ET λ+ q = 0
Dx + Ey + w + b = 0
λ j = 0, j ∈ J
w j = 0, j ∈ I
λ jw j = 0, j ∈ {1, . . . , p}\(I ∪ J)

λ ∈ R, w ∈ S.

P(IJ)

To this purpose, denote K = {1, . . . , p}\(I ∪ J), and define for each j ∈ K the triangle Tj

in IR2 having the vertices (0, 0), (ξ j , 0) and (0, u j), i.e.,

Tj = {(λ j , w j) : λ j

ξ j
+ w j

u j
≤ 1, λ j ≥ 0, w j ≥ 0}. (24)

Proposition 7 A lower bound µ(I J) of the optimal value of Problem P(I J) can be computed
by

µ(I J) := min f (x, y)

s.t. (x, y) ∈ Z
Px + Qy + ET λ+ q = 0
Dx + Ey + w + b = 0
λ j = 0, j ∈ J
w j = 0, j ∈ I
(λ j , w j) ∈ Tj , j ∈ K .

C(IJ)

(25)

(We agree to set µ(I J) = +∞ if Problem C(I J) is infeasible).

Proof Consider constraints λ jw j = 0, (j = 1, . . . , p), λ ∈ R, w ∈ S in Problem
P(I J).

For each j ∈ K = {1, ..., p}\(I ∪ J), constraints

λ jw j = 0, λ ∈ R, w ∈ S

is equivalent to constraints

λ j = 0 or w j = 0, λ ∈ R, w ∈ S. (26)

Obviously, Tj is the convex hull of all points (λ j , w j) satisfying (26).
From this, it follows that the feasible set of Problem P(I J) is contained in that one of

Problem C(I J). Therefore, the proposition follows. ��
Remark 8 One can without difficulty show that the DC equivalent formulation of Problem
P(IJ) reads

µ(I J) := min f (x, y)+ τ
∑

j∈K

min{λ j , w j }

s.t. (x, y) ∈ Z
Px + Qy + ET λ+ q = 0
Dx + Ey + w + b = 0
λ j = 0, j ∈ J
w j = 0, j ∈ I
(λ j , w j) ∈ Tj , j ∈ K .

(27)

123

J Glob Optim (2009) 44:313–337 327

For each j ∈ K , if we replace the concave function min{λ j , w j } by its convex envelope (best
convex subfunction) ϕ j (λ j , w j) on the simplex Tj , then the optimal value of the resulting
problem yields a lower bound for the optimal value of Problem (27). It is well known (cf.
e.g., [15,16]) that ϕ j (λ j , w j) is an affine function satisfying ϕ j (λ j , w j) = min{λ j , w j } = 0
at the vertices of Tj . Thus, the resulting problem is exactly Problem C(IJ).

Remark 9 Let (I J) and (I ′ J ′) be two pairs of index sets such that I ⊆ I ′ and J ⊆ J ′. Then
it is clear that µ(I J) ≤ µ(I ′ J ′). This monotonicity property is useful within a branch and
bound procedure.

Remark 10 If f (x, y) is a convex function, then Problem C(IJ) is a convex minimization
over a polyhedral convex set. In general, f (x, y) is a DC function given by

f (x, y) = f1(x, y)− f2(x, y)

with f1, f2 being convex functions. A promising technique for computing lower bounds of
the optimal value of Problem C(IJ) is to replace the concave function− f2(x, y) by its convex
envelope on some polyhedral sets having simple structures (e.g., simplices or rectangles).
Methods for constructing convex envelopes for different special cases of f2(x, y) can be
found e.g. in [8,9,11,15,16] and references therein.

4.3 Case f is a DC function

Rewriting as in Sect. 3.1. f (x, y) = f1(x, y) − f2(x, y) where f1 and f2 are two convex
functions on Z . In this case, the optimal value of Problem C(IJ) is still a lower bound for (4),
but Problem C(IJ) becomes now a DC program. To compute a lower bound for Problem (4)
we will introduce the following relaxation technique.

For the sake of simplicity, we shall restrict ourselves to the case (ρ being some positive
number)

f2(x, y) := ρ

2
‖(x, y)‖2 = ρ

2
‖x‖2 + ρ

2
‖y‖2

This important class of DC functions is large enough and contains C1,1(Z) (the space of dif-
ferentiable functions whose derivatives are Lipschitz on Z). It is worth noting that C1,1(Z)

contains the more usual space C2(O),(the space of twice continuously differentiable func-
tions on an open convex set O containing Z), and every f ∈ C2(O) is a DC function on Z
with the two following natural useful DC decompositions:

f =
[

f + ρ

2
‖·‖2

]
− ρ

2
‖·‖2 (28)

with ρ ≥ 0 such that the function
[

f + ρ
2 ‖·‖2

]
be convex on K . This condition is satisfied if

ρ ≥ −λ1(∇2 f (x, y)),∀(x, y) ∈ OK where λ1(∇2 f (x, y)) denotes the smallest eigenvalue
of ∇2 f (x, y)) and OK ⊂ O is a closed bounded set which contains an open convex set
containing K , i.e.,

ρ ≥ sup{−λ1(∇2 f (x, y)) : (x, y) ∈ OK } = ρ1

Likewise f can take another DC decomposition

f = ρ

2
‖·‖2 −

[ρ

2
‖·‖2 − f

]
, (29)

123

328 J Glob Optim (2009) 44:313–337

with ρ ≥ 0 such that the function
[

ρ
2 ‖·‖2 − f

]
be convex on K .This condition is satisfied if

(λn(∇2 f (x, y)) is the greatest eigenvalue of ∇2 f (x, y)))

ρ ≥ sup{λn(∇2 f (x, y)) : (x, y) ∈ OK } = ρn .

In particular if f is a quadratic (nonconvex) function

f (x, y) = 1

2

(
x
y

)T

H

(
x
y

)
+ 〈c, (x, y)〉

then ρ1 = −λ1(H) and ρn = λn(H).

Both DC decompositions (28), (29) can be used for DCA, that leads to solving a convex
quadratic program at each iteration. As for B&B, the second DC decomposition will be pre-
ferred because the separabity of its second DC component with respect to the variables (x, y)

makes possible an explicit computation of convex underestimation of f on Z , as it will be
shown below.

Indeed, since the set {(x, y) ∈ Z : Dx + Ey + b ≤ 0} is bounded, problem C(IJ) can be
rewritten, with the help using the DC decomposition (28), in the form of a DC program as
follows:

min f1(x, y)−
[ρ

2
‖x‖2 + ρ

2
‖y‖2

]

s.t. (x, y) ∈ Z , mx ≤ x ≤ Mx , my ≤ y ≤ M y

Px + Qy + ET λ+ q = 0
Dx + Ey + w + b = 0
λ j = 0, j ∈ J
w j = 0, j ∈ I
(λ j , w j) ∈ Tj , j ∈ K .

(30)

where the bounds mx , Mx ∈ IRn1 and my, M y ∈ IRn2 are defined by

mx
j = min{x j : (x, y) ∈ Z , Dx + Ey + b ≤ 0, Px + Qy + ET λ+ q = 0,

0 ≤ λ j ≤ c, j = 1, ..., p}
Mx

j = max{x j : (x, y) ∈ Z , Dx + Ey + b ≤ 0, Px + Qy + ET λ+ q = 0,

0 ≤ λ j ≤ c, j = 1, ..., p} (31)

my
j = min{y j : (x, y) ∈ Z , Dx + Ey + b ≤ 0, Px + Qy + ET λ+ q = 0,

0 ≤ λ j ≤ c, j = 1, ..., p}
M y

j = max{y j : (x, y) ∈ Z , Dx + Ey + b ≤ 0, Px + Qy + ET λ+ q = 0,

0 ≤ λ j ≤ c, j = 1, ..., p}.

Here the second DC decomposition of f is f2(x, y) :=
[ρ

2
‖x‖2 + ρ

2
‖y‖2

]
, and f1+

co(− f2, [mx , Mx]× [my, M y]), where co(− f2, [mx , Mx]× [my, M y]) denotes the convex
envelope of − f2 on [mx , Mx] × [my, M y], is a convex underestimation of f on Z . On the
other hand for ω, ν ∈ IRn1 , ω < ν and ξ, η ∈ IRn2 , ξ < η, we have [9,18,20,21]:

123

J Glob Optim (2009) 44:313–337 329

co(− f2, [ω, ν] × [ξ, η])(x, y) = ρ

2

n1∑

i=1

co(−x2
i , [ωi , νi])+ ρ

2

n2∑

j=1

co(−y2
j , [ξ j , η j]) (32)

and

co(−x2
i , [ωi , νi])(xi) = −(ωi + νi)xi + ωiνi , i = 1, ..., n1

co(−y2
j , [ξ j , η j])(y j) = −(ξ j + η j)y j + ξ jη j , j = 1, ..., n2.

That leads to the lower bound for (4) given as the optimal value of the convex program

µ(I J) := min �(x, y, λ,w) := f1(x, y)− ρ

2

n1∑

i=1

[
(mx

i + Mx
i)xi + mx

i Mx
i

]

−ρ

2

n2∑

j=1

[
(my

j + M y
j)y j − my

j M y
j

]

s.t. (x, y) ∈ Z , mx ≤ x ≤ Mx , my ≤ y ≤ M y

Px + Qy + ET λ+ q = 0
Dx + Ey + w + b = 0
λ j = 0, j ∈ J
w j = 0, j ∈ I
(λ j , w j) ∈ Tj , j ∈ K = {1, . . . , p}\(I ∪ J)

mx ≤ x ≤ Mx , my ≤ y ≤ M y

(33)

(We also agree to set the optimal value equal to +∞ if Problem (33) is infeasible).
In the sequel, for simplicity of notations, for two real numbers u < v we consider the

affine function φ : IR→ IR defined by

φ(t) := −ρ

2
[(u + v)t − uv] (34)

On the other hand, one must note that DCA will be applied to DC programs of the form
which only involve three variables (x, y, λ)

α(τ) = min f1(x, y)−
[ρ

2
‖x‖2 + ρ

2
‖y‖2

]
+ τ

p∑

i=1

min{λi ,−(Dx + Ey + b)i }
s.t. (x, y) ∈ Z

Px + Qy + ET λ+ q = 0
Dx + Ey + w + b = 0
λ j = 0, j ∈ J
D j x + E j y + b j = 0, j ∈ I
ζ j ≤ λ j ≤ ξ j , j ∈ K = {1, . . . , p}\(I ∪ J).

(35)

where D j , E j are the j th rows of the matrices D and E respectively and b j is the j th

component of the vector b.

123

330 J Glob Optim (2009) 44:313–337

4.4 Problem bisection

The algorithm begins with problem (22) which is rewritten as

min f (x, y)

s.t. (x, y) ∈ Z
x ∈ Bx

1 , y ∈ B y
1

Px + Qy + ET λ+ q = 0
Dx + Ey + w + b = 0
λ j = 0, j ∈ J1

w j = 0, j ∈ I1

λ jw j = 0, j ∈ {1, . . . , p}\(I1 ∪ J1)

λ ∈ R;w ∈ S

(P1)

where

⎧
⎪⎨

⎪⎩

Bx
1 =

[
mx , Mx

]
, B y

1 =
[
my, M y

]

I1 = { j ∈ {1, . . . , p} : ζ j > 0},
J1 = { j ∈ {1, . . . , p} : 	 j > 0}.

(36)

In general, let (Pl) be a problem generated within the algorithm with the boxes Bx
l , B y

l and
the sets Il , jl genertated by the branching procedure. By solving the corresponding relaxed
Problem (33) we obtain a lower bound for the optimal value of Problem (Pl).

Let (xl , yl , λl , wl) be an optimal solution of the corresponding relaxed Problem (33).
Denote K := { j ∈ K : λl

jw
l
j > 0}

Calculate

δ1 = max
j=1,2,...,n1

{
−ρ

2
(xl

j)
2 − φ(xl

j)
}

, max at jx

δ2 = max
j=1,2,...,n2

{
−ρ

2
(yl

j)
2 − φ(yl

j)
}

, max at jy

δ3 = max
j∈K

{
τ min{λl

j , w
l
j }

}
, max at j

Based on well known ω−subdivision for the B&B scheme [9,18,20,21] and taking into
account the linear complementarity constraints, our branching procedure is defined by the
maximum of these quantities as follows:

• δ1 is the maximum : Subdividing Bxi

l into two subrectangles Bxi

l1
:= {x ∈ Bxi

l : x jx ≤ xl
jx
}

and Bxi

l2
:= {x ∈ Bxi

l : x jx ≥ xl
jx
} to get two subproblems (Pl1) and (Pl2).

• δ2 is the maximum : Subdividing B yi

l into two subrectangles B yi

l1
:= {y ∈ B yi

l : y jy ≤ yl
jy
}

and B yi

l2
:= {y ∈ B yi

l : y jy ≥ yl
jy
} to get two subproblems (Pl1) and (Pl2)

• δ3 is the maximum : Problem (Pl) is replaced by two problems (Pl1) and (Pl2) with

λl
j
= 0 : Il1 = Il , Jl1 = Jl ∪ { j}, and

wl
j
= 0 : Il2 = Il ∪ { j}, Jl2 = Jl .

Note that we make only one bisection (to be chosen) in case there is equality among the
three quantities δ1, δ2 and δ3.

Throughout the algorithm, we say that “Problem (Pl) is divided into two problems (Pl1)

and (Pl2) by a problem bisection”.

123

J Glob Optim (2009) 44:313–337 331

Remark 11 If f is convex, the bisection problem works only with λ and w and the number
of bisections is finite.

As displayed above, our approaches DCA and B&B (and so their combination GOA) can
be applied to general DC program (10). For the B&B scheme, it is pointed out in Remark
10 that techniques of computing lower bounds depend on structures of convex sets used in
branching procedure. In the next we will describe our approaches with rectangular subdi-
visions which often require the separabilty of − f2(x, y) with respect to its variables. More
exactly we consider the class of DC functions f (x, y) presented in Sect. 4.3 since the algo-
rithm has the same form for other cases.

Note also for this class we can use the poweful code CPLEX to solve related convex
quadratic programs in DCA, B&B and their combination GOA.

4.5 The algorithm

Based on basic operations discussed in the previous subsections, we establish an algorithm
for computing a global optimal solution of Problem (22).

Global Optimization Algorithm (GOA):

Initialization.
Construct two rectangles Bx , B y, and the triangles Tj , j ∈ K by (34). Define the rect-

angles Bx
1 , B y

1 and the subsets I1, J1 by (36). Let R0 = {P1} and solve the corresponding
relaxed problem (33) to obtain an optimal solution (x1, y1, λ1, w1) and the optimal value as
the first lower bound µ0 := µ(R0)

If the linear complementarity constraints are satisfied, i.e.,

λ1w1 = 0, ∀ j ∈ {1, . . . , p} \ {I1 ∪ J1},
and the value objective f (x1, y1) = µ0 then STOP, (x1, y1, λ1, w1) is an optimal solution
and µ0 is the optimal value.

Else, apply DCA to DC program (35) (from the starting point being the obtained solution
of DCA applied to (17)) to get (x1

τ , y1
τ , λ1

τ). Set w1
τ := −Dx1

τ − Ey1
τ − b.

If (λ1
τ)

T w1
τ = 0 then

Set

(x∗, y∗, λ∗, w∗) = (x1
τ , y1

τ , λ1
τ , w

1
τ),

γ 0 = f (x1
τ , y1

τ) (Score),

Else, set γ̃ 0 := Fτ (x1
τ , y1

τ , λ1
τ) (U B f).

Set R← {R0}, k ← 0.

Iteration k ≥ 0.
Select Rk such that µk = µ(Rk) = min{β(R) : R ∈ R}
If γ k < µk(1+ ε) then STOP, (x∗, y∗, λ∗, w∗) is an ε-solution of Problem
Else, divide Rk into Rk1 = {Pk1} and Rk2 = {Pk2} by the problem bisection.
For each Rki (i = 1, 2), if the corresponding relaxed Problem (33) is feasible, then

(i) Compute an optimal solution (xki , yki , λki , wki), and the optimal value
µki = �(xki , yki , λki , wki),

123

332 J Glob Optim (2009) 44:313–337

Update γ̃ k = min{γ̃ k, Fτ (xki , yki , λki)} (U B f).

(ii) If (xki , yki , λki , wki) is feasible to Problem (22), then update the Score
γ k = min{γ k, f (xki , yki)}, and update the current best feasible solution (x∗, y∗, λ∗,
w∗) = (xki , yki , λki , wki) such that γ k = f (x∗, y∗).

(iii) If condition of restarting DCA (18) is satisfied then
Apply DCA to DC program (35) from the starting point (xki , yki , λki) to obtain the
solution (xki

τ , yki
τ , λki

τ).

b) Update γ̃ k = min{γ̃ k, Fτ (xki
τ , yki

τ , λki
τ)} (U B f).

c) If (xki
τ , yki

τ , λki
τ , wki

τ) is feasible to Problem (22), then update the Score γ k =
min{γ k, f (xki

τ , yki
τ)}, and update the current best feasible solution (x∗, y∗, λ∗, w∗)

= (xki
τ , yki

τ , λki
τ , wki

τ) such that γ k = f (x∗, y∗).

Set R← R \ {Ri : µ(Ri) > γ k} and go to iteration k + 1.

According to well known results in [9,16,18,20,21] about Branch-and-Bound schemes
using normal rectangular subdivisions, the convergence of our BB and our combined DCA-
BB (GOA) can be stated as follows

Proposition 12 (i) If the algorithm GOA terminates at some iterations K then (x K , yK) is
a global solution of (1).

(ii) If the Algorithm is infinite then it generates a bounded sequence {(xk, yk)} every
cluster point of which is a global solution of (1) and γ k ↘ α, µk ↗ α.

Remark 13 In the case f is a convex function, algorithm GOA terminates after finitely many
iterations, in virtue of Remark 11.

Remark 14 (Practical choice of the parameter penalty τ > τ1 and its use in our combined
DCA and BB).

In general it is difficult to compute any upper bound of τ1 in Problem (10). In practice we
take τ sufficiently large in order for Problem (10) to be equivalent to Problem (36). To check
equivalence of these problems, we use the exact penalty results [13,14]: α(τ) ≤ α for every
τ ≥ 0 and if an optimal solution to Problem (10) with a given τ ≥ 0 is feasible to Problem
P(36) then it is also an optimal solution of the latter one and τ ≥ τ1.

5 Illustrative examples and computational experiments

We have implemented our algorithm in the case where f is a nonconvex quadratic function
for which the DC decomposition (28) will be used for the DCA, say

f (x, y) := 1

2
(xT , yT)H

(
x
y

)
+ (c1)T x + (c2)T y,

with H being n1 × n2 symmetric matrix, c1 ∈ IRn1 , c2 ∈ IRn2 and

Z := {(x, y) ∈ IRn1 × IRn2 : x ≥ 0, y ≥ 0, Ax + By + d ≤ 0}, (37)

with A and B being matrices of dimensions (m1×n1), (m1×n2) respectively and d ∈ IRm1 .
The example below illustrates the algorithms when

m1 = 2, p = 4, n1 = 2, n2 = 2.

123

J Glob Optim (2009) 44:313–337 333

H =

⎛

⎜⎜⎝

−3.8 4.4 1.2 −2.2
4.4 −2.2 0.6 1.8
1.2 0.6 0.0 0.4
−2.2 1.8 0.4 0.0

⎞

⎟⎟⎠ , c1 =
(

935.74474
87.53654

)
, c2 =

(
121.96196
299.24825

)
,

A =
(

0.00000 3.88889
−2.00000 8.77778

)
, B =

(
4.88889 7.44444
−5.11111 0.88889

)
, d =

(−61.57778
−0.80000

)
,

P =
(−17.85000 6.57500

30.32500 30.32500

)
, Q =

(
21.10204 11.81633
11.81633 −14.44898

)
, q =

(−18.21053
13.05263

)
,

D =

⎛

⎜⎜⎝

5.00000 7.44444
−8.33333 3.00000
−8.66667 −8.55556

6.44444 −5.11111

⎞

⎟⎟⎠ , E =

⎛

⎜⎜⎝

3.88889 1.77778
6.88889 6.11111
−5.33333 −7.00000

1.44444 4.44444

⎞

⎟⎟⎠ , b =

⎛

⎜⎜⎝

−39.62222
−60.00000

72.37778
−17.28889

⎞

⎟⎟⎠ .

The smallest eigenvalue of H is −8.4793, so we choose ρ = 8.48 in (28).

Algorithm GOA

Initialization

− The first lower bound is µ1 = 2251.552997 with

(x(I 1 J 1), y(I 1 J 1)T = (0.200001, 1.999998, 3.999999, 4.600003),

w(I 1 J 1)T = (0, 0, 0, 0.000011), λ(I 1 J 1)T

= (9.129313, 10.617138, 63.017967, 67.375372).

Applying DCA to (17) (to find an initial point of DCA applied to DC program (35)) we
obtain

(x̄0, ȳ0)T = (0.200002, 1.999997, 4.000002, 4.600002),

(w̄0)T = (0, 0, 0, 0), : (λ̄0)T = (0, 0, 36.113880, 43.251700)

which is a feasible point to (22).
− Apply DCA to DC program (35) from this point we get

(x̄1, ȳ1)T = (0.200002, 1.999997, 4.000002, 4.600002)

(w̄1)T = (0, 0, 0, 0), : (λ̄1)T = (22.764326, 22.841008, 97.375901, 99.227316)

and γ 1 = f (x̄1, ȳ1) = 2251.553704.
Since γ 1 − µ1 = 0.000707, the algorithm is terminated with an ε-optimal solution
(x̄1, ȳ1).

When applying the Branch and Bound algorithm without DCA we obtain an ε-optimal
solution

(x̃, ỹ)T = (0.200001, 1.999997, 3.999998, 4.600005),

w̃T = (0.000007, 0, 0, 0), λ̃T = (0, 46.900128, 111.298969, 97.180623),

with γ k = 2251.553551 and µk = 2251.553416 after 5 iterations.

123

334 J Glob Optim (2009) 44:313–337

We have tested the two variants of our algorithms: the combined DCA - Branch and
Bound algorithm GOA and the Branch and Bound scheme in GOA without DCA denoted
BB (i.e. the step (iii) in GOA is removed) on a collection of 15 problems randomly generated.
The elements of matrices and vectors in these problems are random numbers in the interval
(−20, 20). The constraints at level 1 are generated such that the feasible set Z defined by
(37) of Problem (4) is nonempty and bounded. For the boundedness of Z we take the first
constraint as (Ai and Bi denote the i th row of the matrices A and B respectively)

A1x + B1 y + d1 ≤ 0,

with A1 > 0, B1 > 0 and d1 < 0. The other constraints in level 1 are randomly generated.
We check nonemptiness of generated polyhedral convex sets Z by using the CPLEX 7.5. Let
(x0, y0) ∈ Z . The constraints at level 2 are randomly generated such that the feasible set of
Problem (4) in level 2 is nonempty. For this, we randomly generate the matrices D, E and set
b = −Dx0 − Ey0. Finally we use only the random data which provide nonempty bounded
polyhedral convex set �.

The algorithm is written in Visual C++ and the code is run on a Intel Centrino 2 GHz with 1
Go of RAM. The software CPLEX 7.5 has been used for solving convex quadratic programs.
We take ε1 = ε2 = 10−5 for DCA. The stopping criterion of GOA is γ k∗ − µk ≤ 0.05µk

(we replace the condition γ k∗ = µk in step i) of iteration k by this inequality). In step v) we
restart DCA when Fτ ((x(I k

i J k
i), y(I k

i J k
i), λ(I k

i J k
i)) < (1+ 0.001)γ k .

The performance of BB is presented in Table 1. In Table 2 we report the results of GOA:
updating the upper bound deals only with feasible solutions of Problem (22).

We use the following notations:

• N◦: Problem’s number;
• UB: the upper bound (the optimal value given by the algorithm);
• LB: the lower bound.
• #Iter: number of iterations of the algorithm;
• #DCA: number of restarting DCA;

Table 1 Computational results of BB

No. Dim B&B

n1 n2 m1 p #Iter UB LB t (s)

1 50 40 40 30 505 462644.5247 448955.1444 242.20
2 55 45 50 40 10000 – – – F
3 60 40 45 30 2492 −28265449.1373 −28272922.7411 2182.47
4 60 45 50 40 1503 −611438.5458 −642009.5275 1238.36
5 65 45 45 45 2562 2046166.8028 2019211.5721 3196.06
6 70 50 40 40 2515 −1089775.0821 −1111945.6653 2904.92
7 75 55 60 70 10000 – – – F
8 80 55 70 50 10000 – – – F
9 85 65 50 70 1802 601955.0399 585978.1117 3872.19
10 90 50 35 40 4266 −38156237.9444 −38181803.5565 6379.34
11 100 60 50 60 955 −689439.8551 −723899.9328 2126.77
12 100 70 60 60 10000 – – – F
13 110 75 50 60 2859 −1756770.8377 −1816249.7601 6980.55
14 115 80 50 60 10000 – – – F
15 120 100 80 80 10000 – – – F

F : Failed to optimize—cannot find a global solution after 10000 iterations

123

J Glob Optim (2009) 44:313–337 335

Table 2 Computational results of GOA

No. Dim GOA

n1 n2 m1 p #Iter UB LB #DCA t (s)

1 50 40 40 30 12 459822.8581 439066.0691 4 20.36
2 55 45 40 40 37 −1041541.4271 −1066550.3169 2 41.64
3 60 40 45 30 2 −27552404.9379 −28923435.2544 1 20.22
4 60 45 50 40 11 −632930.3141 −656901.7298 2 30.44
5 65 45 45 45 63 2029743.5968 1962483.0682 96 284.52
6 70 50 40 40 31 −1100516.7247 −1155224.0662 2 71.05
7 75 55 60 70 273 824830.4224 786643.1045 2 556.36
8 80 55 70 50 9276 −574659.5627 −603391.6106 36 16162.67
9 85 65 50 70 141 596288.0777 568695.1210 18 451.27
10 90 50 35 40 26 −37872305.7633 −39742103.3698 16 108.24
11 100 60 50 60 251 −696833.4655 −731633.8059 2 495.47
12 100 70 60 60 207 −1738223.7518 −1815521.9879 2 527.58
13 110 75 50 60 27 −1772929.7039 −1840109.5365 15 212.91
14 115 80 50 60 118 1534483.3384 1500965.6830 2 488.56
15 120 100 80 80 407 2230626.8007 2121577.4023 13 2371.28

We have chosen the penalty parameter τ = 105 for these test problems. The optimal
solution of the convex quadratic program Problem will be used as initial point for DCA in
our combined algorithm GOA. All CPU are computed in seconds.

Note that #Iter is limited to 10000. Beyond this threshold we consider that the algorithm
fails: neither feasible solution is found nor the quality of obtained solution is less than 5%.
Comments: from the numerical results on these test problems we observe that

(i) The combined DCA-Branch and Bound algorithms GOA always provided ε-optimal
(feasible) solutions to quadratic bilevel programs. While the Branch and Bound algo-
rithm cannot provide ε-optimal (feasible) solutions in many cases

(ii) Not surprisingly, GOA is much better than BB. The superiority of GOA with respect
to BB increases with the dimension. The efficiency of GOA is clearly due to DCA.

(iii) DCA finds rapidly a feasible solution to (4), by the way it improves considerably the
best current feasible solution during the restarting process and therefore accelerates the
convergence of GOA.

(iv) An interesting issue is how to restart DCA. Our strategy seems to be quite natural and
efficient because the number of restarting DCA is relatively small, except for some
problems finding feasible solutions (of the original problem) requires a more important
number of restarting DCA.

6 Conclusion

We have proposed a combination of DCA (efficient local algorithm capable of handling large
scale DC programs) and an adapted Branch-and-Bound scheme (BB) to globally solving non-
linear bilevel problems in which the leader’s problem is a linearly constrained DC program
while the follower’s problem concerns the set of all Karush-Kuhn-Tucker points of quadratic
programming problems. The problem is beforehand reformulated as a DC program with
the help of exact penalty techniques in DC programming and suitable DC decompositions
are investigated in order to get appropriate Branch-and-Bound methods. The very original

123

336 J Glob Optim (2009) 44:313–337

DCA’s feasibility (i.e. the sequence of points generated by DCA, applied to the penalized
equivalent DC program, is contained in the feasible set of the original problem) is pointed
out as well as the strategy of restarting DCA with better feasible solutions given by BB.
Numerical simulations show the effectiveness and efficiency of DCA and its combination
GOA with BB in order to reach global solutions of the problems under consideration. Our
future work is dealing with solution of the complete nonlinear bilevel obtained from (1) by
replacing the KKT—point set K (x) of (2) by its optimal solution set.

References

1. Bard, J.F.: An algorithm for solving the general bilevel programming problems. Math. Oper. Res. 8, 260–
272 (1983)

2. Bard, J.F.: Convex two-level optimization. Math. Program. 40, 15–27 (1988)
3. Bard, J.F., Falk, J.E.: An explicit solution to the multi-level programming problem. Comput. Oper.

Res. 9, 77–100 (1982)
4. Falk, J.E., Liu, J.: On bilevel programming, Part I: general nonlinear cases. Math. Program. 70,

47–72 (1995)
5. Gumus, Z.H., Floudas, C.A.: Global optimization of nonlinear bilevel programming problems. J. Glob.

Optim. 20, 1–31 (2001)
6. Hermanns, P., Van Thoai, N.: Method for global optimization of a class of nonlinear bilevel programming

problems. Research Report No. 02-14. Department of Mathematics, University of Trier (2002)
7. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms, Parts I&II. Springer

Verlag (1991)
8. Hoai An, L.T.: Contribution à l’Optimisation Non Convexe et l’Optimisation Globale: Théorie, Algo-

rithmes et Applications. Habilitation, National Institute for Applied Sciences, Rouen (1997)
9. Hoai An, L.T., Tao, P.D.: Solving a class of linearly constrained indefinite quadratic problems by DC algo-

rithms. J. Glob. Optim. 11, 253–285 (1997)
10. Hoai An, L.T., Tao, P.D.: Large scale global molecular optimization from exact distance matrices by a

DC optimization approach. SIAM J. Optim. 14(1), 77–116 (2003)
11. Hoai An, L.T., Tao, P.D.: DC programming approaches and DCA for globally solving linear comple-

mentarity problems. Research Report, National Institute for Applied Sciences, Rouen, Submitted (2004)
12. Hoai An, L.T., Tao, P.D.: The DC (difference of convex functions) programming and DCA revisited

with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–48 (2005)
13. Hoai An, L.T., Tao, P.D., Muu, L.D.: Exact penalty in DC programming. Vietnam J. Math. 27(2), 169–

179 (1999)
14. Hoai An, L.T., Tao, P.D., Van Ngai., H.: Exact penalty techniques in DC programming. Research Report,

National Institute for Applied Sciences, Rouen, Submitted (2004)
15. Horst, R., Pardalos, P.M., Van Thoai, N.: Introduction to Global Optimization, 2nd edn. Kluwer Academic

Publishers (2000)
16. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. 3rd edn. Springer, Berlin (1996)
17. Luo, Z.-Q., Pang, J.-S., Ralph, D., Wu, S.-Q.: Exact penalization and stationarity conditions of mathe-

matical programs with equilibrium constraints. Math. Program. 75, 19–76 (1996)
18. Muu, L.D., Phong, T.Q., Tao, P.D.: Decomposition methods for solving a class of nonconvex program-

ming problems dealing with bilinear and quadratic functions. Comput. Optim. Appl. 4, 203–219 (1995)
19. Muu, L.D., Van Qui, N.: A global optimization method for solving convex quadratic bilevel programming

problems. J. Glob. Optim. 26, 199–219 (2003)
20. Phong, T.Q., Hoai An, L.T., Tao, P.D.: Decomposition branch and bound method for globally solving

linearly constrained indefinite quadratic minimization problems. Oper. Res. Lett. 17, 215–222 (1996)
21. Phong, T.Q., Hoai An, L.T., Tao, P.D.: On globally solving linearly constrained indefinite quadratic

minimization problems by decomposition branch and bound method. RAIRO Recherche Opérationn-
elle 30(1), 31–49 (1996)

22. Rockafellar, R.T.: Convex Analysis. Princeton University Press, NJ (1970)
23. Shimizu, K., Ishizuka, Y., Bard, J.F.: Nondifferentiable and Two-Level Mathematical Programming.

Kluwer Academic Publishers (1997)
24. Tanino, T., Ogawa, T.: An algorithm for solving two-level convex optimization problems. Int. J. Syst.

Sci. 15, 163–174 (1984)

123

J Glob Optim (2009) 44:313–337 337

25. Tao, P.D., Hoai An, L.T.: Convex analysis approaches to DC programming: theory, algorithms and
applications. Acta Math. Vietnam. 22(1), 287–367 (1997)

26. Tao, P.D., Hoai An, L.T.: DC optimization algorithms for solving the trust region subproblem. SIAM J.
Optim. 8, 476–507 (1998)

27. Van Thoai, N., Yamamoto, Y., Yoshise, A.: Global optimization method for solving mathematical pro-
grams with linear complementarity constraints. J. Optim. Theory Appl. (Forthcoming) (2002)

28. Vicente, L.N., Calamai, P.H.: Bilevel and multilevel programming: a bibliography review. J. Glob.
Optim. 5, 291–306 (1994)

123

	DC programming techniques for solving a classof nonlinear bilevel programs
	Abstract
	1 Introduction
	2 DC programming and DCA
	2.1 DC programming
	2.2 DCA

	3 DCA for solving the DC program (10)
	3.1 Reformulation of the penalty equivalent as a DC program
	3.2 Initial point and strategies of launching DCA

	4 Global optimization algorithm
	4.1 Reformulation of Problems (4) and (10)
	4.2 Lower bound estimation
	4.3 Case f is a DC function
	4.4 Problem bisection
	4.5 The algorithm

	5 Illustrative examples and computational experiments
	6 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

